

Assessing stream health through the lens of fish eDNA Joe Buckwalter¹, Paul Angermeier², and Emmanuel Frimpong¹

¹ Virginia Tech Dept. of Fish and Wildlife Conservation

² Virginia Cooperative Fish and Wildlife Research Unit

Outline

1. Biomonitoring

- 2. Sampling fish communities
 - <u>CES</u> Conventional electrofishing & seining
 - <u>eDNA</u> Environmental DNA metabarcoding
- 3. Delmarva case study

Nested processes control aquatic organisms' habitat

Which indicator organisms?

- Species diversity
- Objective?
 - Local site / point source \rightarrow bugs
 - Watershed / regional conditions \rightarrow fish

Macroinvertebrates (all states) Fish (2/3 of states) Algae (1/3 of states)

Fish Index of Biotic Integrity (generic)

			Scoring Criteria									
	Category and Metric		5	3	1							
	Species diversity											
0	Number of species											
Occurrence- based	Number of darter species Number of sunfish species Number of sucker species		Expectation varies with stream size, region, basin									
								Number of intolerant species				
								% individuals as intolerant		<5%	5-20%	>20%
	Trophic composition											
	% individuals as omnivores % individuals as insectivorous cyprinids		>20%	20-45%	>45%							
Abundance-			>45%	20-45%	<20%							
based	% individuals as piscivores		>5%	1-5%	<1%							
	Fish abundance and condition											
	Number of individuals		Expectation varies with stream size, region, basin									
	% individuals as hybrids		0	>0-1%	>1%							
	% individuals with anomalies		0-2%	>2-5%	>5%							
	Sum (IBI score)		60 <		12							
150	Integrity class		Excellent Goo	od Fair Po	oor Very poor							

Harris et al. 2005. USGS Sci. Invest. Rpt. 2005-5218

How to sample fish? CES—Conventional electrofishing and seining

Advantages:

- 1. Standard methods
- Provides occurrenceand abundance-based IBI metrics
- 3. Clearly delineated sample unit

CES—advantages (cont.)

4. Fish in hand !

CES—limitations

- 1. Laborious!
- 2. Small sample unit
- 3. Hazardous
- 4. Invasive
- 5. Expensive equipment
- 6. Imperfect detection
- 7. Taxonomist required
- 8. Some habitats not accessible

eDNA metabarcoding A new way to sample fishes

Filter some water...

eDNA metabarcoding—lab workflow

http://www.naturemetrics.co.uk/

eDNA metabarcoding—deliverable

ESV Family ESV_000031 Catostomidae Ca ESV_009176 Moronidae	Morone		matchin	er of spec g the sequ given leve # Spp 1	uence		sam	licates of the nple.	
ESV_000031 Catostomidae Ca ESV_009176 Moronidae ESV_009177 Ictaluridae	Catostomus Morone	Catostomus commersonii	match 100	1	AAAAAG	3066	1340	5780	3462
ESV_009176 Moronidae ESV_009177 Ictaluridae I	Morone								
ESV_009177 Ictaluridae I		Morone americana	100	1	AAAAAG	0	2582	249	0
	A second second							122.22	U.
ESV_007836 Clupeidae	Ictalurus	Ictalurus furcatus	100	1	GAAAAG	584	101	0	1039
	Alosa	NA	100	2	GAAAAG	1328	0	0	0
ESV_009179 Clupeidae D	Dorosoma	Dorosoma cepedianum	99	1	AAAAAG	902	0	0	278
ESV_009181 Catostomidae E	Erimyzon	Erimyzon oblongus	100	1	ATAAAG	341	124	282	381
ESV_009182 Moronidae	Morone	Morone saxatilis	100	1	AAAAAG	126	0	0	994

the sample differ in that taxonomic rank

The number in each cell is the absolute number of times a given sequence was read by the sequencer.

eDNA metabarcoding—advantages

- 1. Easy sampling, little effort
- 2. Cost effective \rightarrow collect more samples
- 3. Easy to standardize
- 4. Safe
- 5. Non-invasive
- 6. More sensitive (detects more species)
- 7. Accurate IDs—no taxonomist needed
- 8. Can sample any habitat
- 9. Larger sample unit (1-100 km)*

* But see disadvantages!

eDNA metabarcoding—limitations

1. DNA carried downstream \rightarrow Fuzzy sample unit

- a. Upstream extent?
- b. Temporal extent?
- c. Depends on enviro & species?

2. Lack of consensus on standard methods

- a. How many liters to filter, when, how, from where?
- b. Sample preservation?
- c. Primers
- d. Sequencing & processing
- 3. Incomplete / inaccurate DNA ref. libraries
 - a. Regional library is best
- 4. Imperfect DNA barcodes
 - a. Some congeners have same sequence
- 5. Biased/noisy abundance metrics
 - a. Primer bias—some sequences preferentially amplified
 - b. Species traits and behavior + environ. = $\uparrow \downarrow$ eDNA counts

Articles assessing eDNA for estimating fish abundance

 90% found a positive correlation between eDNA read counts and abundance and/or biomass

Delmarva case study

Objective: to compare fish communities detected by CES and eDNA.

- Hypothesis 1: eDNA will detect more fish species than CES.
- Hypothesis 2: eDNA read counts by site and species will be positively correlated with CES fish counts.

Delmarva case study—Methods

29 Delmarva streams, June 2022, 10-50 km² watersheds

Methods—CES:

- Electrofished two 20-CW reaches (~80 m), two passes each.
- Two side-by-side shockers.
- Seined pools

Methods—eDNA metabarcoding:

- Two 25 m reaches
 - upstream and downstream of CES reaches)
- Filtered 1-3 L of water (5 micron).
- MiFishU primers
 - mtDNA 12S rRNA gene
- Jonah Ventures eDNA lab
- Regional DNA barcode library
 - Chesapeake Bay Barcode Initiative (CBBI, Smithsonian)

Results (preliminary)—CBBI Barcode Library

• 503 distinct fish sequences

	Sequences matched		
Barcode library	to species	to genus	
GenBank	361 (72%)	440 (87%)	
CBBI	457 (91%)	503 (100%)	

- GenBank misidentified...
 - Mud Sunfish as Rock Bass
 - Redear Sunfish as Redspotted Sunfish

Results

H1.-eDNA will detect more species than CES

	Approach	
	CES	eDNA
Taxa detected	40 spp	36 spp + 2 genera ^a
Spp. detected by only one approach	3 spp.	3 spp.
Spp. per site ^b	15.2	16.9
Sites with more spp. detected	5	18

^a MiFish barcode unable to resolve 2 congener pairs:

- 1. Chain vs Redfin pickerel
- 2. Bluespotted vs Banded sunfish

^b paired t-test, *t*(28) = 3.548, *p* = 0.0007

Results H1.-(cont.)

What species would we have missed if we had only sampled with CES? With eDNA?

Results H1.-(cont.)

If we chose only one approach, eDNA would have yielded more species at 18 sites, CES at 5 sites.

Results

H2.—eDNA read counts by site and species will be positively correlated with CES counts.

r(488) = 0.579, t = 15.70, p < 0.0001

Next steps

- Replicate in Piedmont streams
- Biomass \rightarrow eDNA count
- Explain CES-eDNA discrepancies in terms of:
 - Environmental factors (e.g., discharge, temp, pH, open canopy)
 - Species traits (e.g., body size, June spawning, habitat preference)
- Upstream-downstream eDNA samples
 - Is the diff. related to stream distance, discharge, temp, pH?
- Do watershed characteristics (e.g., land use, vegetation) explain more of the variability in eDNA or CES fish data? What about reach chars?
- Compare IBI scores from CES vs eDNA

Acknowledgements

- USGS funding
- Greg Noe's team (site selection and permissions)
- Rob Aguilar (Smithsonian CBBI barcode)
- Joe Craine (Jonah Ventures, metabarcoding)
- Aaron Maloy (USFWS, metabarcoding tips)